martes, 18 de diciembre de 2012

Una función y(x) se llama implícita cuando está definida de la forma F(x, y) = 0 en lugar de la habitual.
Por ejemplo, puede probarse que la siguiente ecuación define una función implícita en cierta región de \mathbb{R}^2 entre las variables x e y:
 y^3 + y^2 + 5xy + x^2 + x + y = 0 \,

 Diferenciación

Para poder derivar una función implícita se usa la regla de la cadena, en el caso de la variable independiente no hay problema ya que se deriva directamente, para la variable dependiente se considera como una función que a su vez está en función de la variable independiente:
Dada una función  F(x,y) \,, implícita, si queremos calcular la derivada de y respecto de x:  \frac{dy}{dx} = f'(x) .
Si consideramos  y = f \left ( x \right ) es una función en términos de la variable independiente x y  G \left ( y \right ) es una función en términos de la variable dependiente y, dado que  y = f \left ( x \right ) , entonces para obtener la derivada:
 D_x \left ( G \left ( y \right ) \right ) = D_x \left ( G \left ( f \left ( x \right ) \right ) \right ) = G' \left ( f \left ( x \right ) \right ) \left ( f' \left ( x \right ) \right )

Ejemplo

Obtener la derivada de:
 6x^2y + 5y^3 + 3x^2 = 12 - x^2y^2 \,
El término  6x^2y se puede considerar que son dos funciones,  6x^2 y  y por lo que se derivará como un producto:
 D_x \left ( 6 x^2y \right ) = \left ( 12x \right ) \cdot y + \left ( 6 x^2 \right ) \cdot \left ( \frac{dy}{dx} \right )
El término  5 y^3 se deriva como:
 D_x \left ( 5 y^3 \right ) = 15y^2 \cdot \frac {dy}{dx}
El término  3 x^2 se deriva de forma normal como:
 D_x \left ( 3x^2 \right ) = 6x \,
El valor constante 12, que no depende ni de x ni de y, tiene por derivada 0, como corresponde a un valor constante.
 D_x \left ( 12 \right ) = 0 \,
El término  x^2y^2 se puede considerar como un producto y se deriva como:
 D_x \left ( x^2y^2 \right ) =2xy^2 + x^2 \cdot \left ( 2y \cdot \frac {dy}{dx} \right )
Al unir todos los términos se obtiene:
 12xy + 6x^2 \cdot \frac{dy}{dx} + 15y^2 \cdot \frac{dy}{dx} + 6x = - 2xy^2 -2x^2y \cdot \frac{dy}{dx}
Ordenando:
 6x^2 \cdot \frac{dy}{dx} + 15y^2 \cdot \frac{dy}{dx} + 2x^2y \cdot \frac{dy}{dx}= -12xy - 6x- 2xy^2
Factorizando respecto a ( \frac {dy}{dx} ) los valores son:
\left ( 6x^2 + 15y^2 + 2x^2y \right ) \cdot \frac{dy}{dx} = - \left ( 12xy + 6x + 2xy^2 \right )
Finalmente despejando \frac {dy}{dx} se obtiene la derivada de la función implícita:
 \frac{dy}{dx} = - \frac { 12xy + 6x + 2xy^2 } { 6x^2 + 15y^2 + 2x^2y }
Derivada de la función coseno
Si f(x) = cos(x)
f'(x)=\lim_{h\to 0}{\cos(x+h)-\cos(x)\over h}
A partir de la identidad trigonométrica \cos(A+B)=\cos(A)\cos(B)-\sin(A)\sin(B), se puede escribir
f'(x)=\lim_{h\to 0}{\cos(x)\cos(h)-\sin(x)\sin(h)-\cos(x)\over h}
Operando se obtiene:
f'(x)=\lim_{h\to 0}{\cos(x)(\cos(h)-1)-\sin(x)\sin(h)\over h}
Como sen(x) y cos(x) no varían al variar h, se pueden sacar fuera del límite para obtener
f'(x)=\cos(x)\lim_{h\to 0}{\cos(h)-1\over h} - \sin(x)\lim_{h\to 0}{\sin(h)\over h}
El valor de los límites
\lim_{h\to 0}{\sin(h)\over h} \quad\text{y}\quad \lim_{h\to 0}{(\cos(h)-1)\over h}
Son 1 y 0 respectivamente. Por tanto, si f(x) = cos(x),
f'(x)=-\sin(x) \,

 Derivada de la función tangente

A partir de la regla del cociente, según la cual si la función que se quiere derivar, f(x)\,, se puede escribir como
f(x) = \frac{g(x)}{h(x)}
y h(x) \ne 0\, , entonces la regla dice que la derivada de g(x)/h(x)\, es igual a:
\frac{d}{dx}f(x) = f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2}
A partir de la identidad trigonométrica
\tan(x) = {sin(x)\over\cos(x)}
haciendo:
g(x)=\sin(x) \,
g'(x)=\cos(x) \,
h(x)=\cos(x) \,
h'(x)=-\sin(x) \,
sustituyendo resulta
f'(x) = \frac{\cos(x)\cos(x) - \sin(x)[-\sin(x)]}{\cos^2(x)}
operando
f'(x) = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}
y aplicando las identidades trigonométricas
\cos^2(x) + \sin^2(x) = 1 \,
\sec^2(x)=\frac{1}{cos^2(x)}\,
resulta:
f'(x)=\sec^2(x) \,
Derivada de la función seno
A partir de la definición de la derivada de una función f(x):
f'(x)=\lim_{h\to 0}{f(x+h)-f(x)\over h}
Por tanto si f(x) = sin(x)
f'(x)=\lim_{h\to 0}{\sin(x+h)-\sin(x)\over h}
A partir de la identidad trigonométrica \sin(A+B)=(\sin(A)\cos(B)+\cos(A)\sin(B)), se puede escribir
f'(x)=\lim_{h\to 0}{\sin(x)\cos(h)+\cos(x)\sin(h)-\sin(x)\over h}
Agrupando los términos cos(x) y sin(x), la derivada pasa a ser
f'(x)=\lim_{h\to 0}{\cos(x)\sin(h)-\sin(x)(1-\cos(h))\over h}
Reordenando los términos y el límite se obtiene
f'(x)=\lim_{h\to 0}{\cos(x)\sin(h)\over h} - \lim_{h\to 0}{\sin(x)(1-\cos(h))\over h}
Ahora, como sin(x) y cos(x) no varían al variar h, se pueden sacar fuera del límite para obtener
f'(x)=cos(x)\lim_{h\to 0}{\sin(h)\over h} - \sin(x)\lim_{h\to 0}{(1-\cos(h))\over h}
El valor de los límites
\lim_{h\to 0}{\sin(h)\over h} \quad\text{y}\quad \lim_{h\to 0}{(1-\cos(h))\over h}
Son 1 y 0 respectivamente por Teorema del sándwich. Por tanto, si f(x) = sin(x),
f'(x)=\cos(x) \,