MAXIMOS Y MINIMOS RELATIVOS.
.Entre los valores q puede tener una función (Y) puede haber uno que sea el mas grande y otro que sea el mas pequeño. A estos valores se les llama respectivamente punto máximo y punto mínimo absolutos.
Si una función continua es ascendente en un intervalo y a partir de un punto cualquiera empieza a decrecer, a ese punto se le conoce como punto critico máximo relativo, aunque comúnmente se le llama solo máximo.
Por el contrario, si una funcion continua es decreciente en cierto intervalo hasta un punto en el cual empieza a ascender, a este punto lo llamamos puntro critico minimo relativo, o simplemente minimo.
Una funcion puede tener uno, ninguno o varios puntos criticos.
Curva sin máximos ni mínimos función sin máximos ni mínimos

Curva con un mínimo curva con varios mínimos y máximos
La pendiente de la recta tangente a una curva (derivada) en los puntos críticos máximos y mínimos relativos es cero, ya que se trata de una recta horizontal.
En los puntos críticos máximos, las funciones tienen un valor mayor que en su entorno, mientras que en los mínimos, el valor de la función es menor que en su entorno.
En un punto critico maximo relativo, al pasar la funcion de creciente a decreciente, su derivada pasa de positiva a negativa.
En un punto critico minimo relativo, la funcion deja de decrecer y empieza a ser creciente, por tanto, su derivada pasa de negativa a positiva.
METODOS PARA CALCULAR MAXIMOS Y MINIMOS DE UNA FUNCION
Para conocer las coordenadas de los puntos críticos máximos y mínimos relativos en una función, analizaremos dos mecanismos:

No hay comentarios:
Publicar un comentario